A Novel Real-Time Power Aware Routing Protocol in Wireless Sensor Networks
نویسندگان
چکیده
One of the most important and challenging issues in real-time applications of resource-constrained wireless sensor networks (WSNs) is providing end-to-end delay requirement. To address such an issue a few QoS routing protocols have been proposed. THVR (Two-Hop Velocity based routing protocol) is newly proposed real-time protocol while it is based on the concept of using two-hop neighbor information for routing decision. In this paper we propose a novel real-time Power-Aware Two-Hop (PATH) based routing protocol. PATH improves real-time performance by means of reducing the packet dropping in routing decisions. PATH is based on the concept of using two-hop neighbor information and power-control mechanism. The former is used for routing decisions and the latter is deployed to improve link quality as well as reducing the delay. PATH dynamically adjusts transmitting power in order to reduce the probability of packet dropping. Also PATH addresses practical issue like network holes, scalability and loss links in WSN’s .We simulate PATH and compare it with THVR. Our simulation results show that PATH can perform better than THVR in term of energy consumption and delay.
منابع مشابه
HYREP: A Hybrid Low-Power Protocol for Wireless Sensor Networks
In this paper, a new hybrid routing protocol is presented for low power Wireless Sensor Networks (WSNs). The new system uses an integrated piezoelectric energy harvester to increase the network lifetime. Power dissipation is one of the most important factors affecting lifetime of a WSN. An innovative cluster head selection technique using Cuckoo optimization algorithm has been used in the desig...
متن کاملEEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks
Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...
متن کاملEEQR: An Energy Efficient Query-Based Routing Protocol for Wireless Sensor Networks
Routing in Wireless Sensor Networks (WSNs) is a very challenging task due to the large number of nodes, their mobility and lack of proper infrastructure. Since the sensors are battery powered devices, energy efficiency is considered as one of the main factors in designing routing protocols in WSNs. Most of energy-aware routing protocols are mere energy savers that attempt to decrease the energy...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملA Priority-based Routing Algorithm for Underwater Wireless Sensor Networks (UWSNs)
Advances in low-power electronics design and wireless communication have enabled the development of low cost, low power micro-sensor nodes. These sensor nodes are capable of sensing, processing and forwarding which have many applications such as underwater networks. In underwater wireless sensor networks (UWSNs) applications, sensors which are placed in underwater environments and predicted ena...
متن کاملAn Adaptive LEACH-based Clustering Algorithm for Wireless Sensor Networks
LEACH is the most popular clastering algorithm in Wireless Sensor Networks (WSNs). However, it has two main drawbacks, including random selection of cluster heads, and direct communication of cluster heads with the sink. This paper aims to introduce a new centralized cluster-based routing protocol named LEACH-AEC (LEACH with Adaptive Energy Consumption), which guarantees to generate balanced cl...
متن کامل